正确使用人工智能
无论项目范围或企业机构成熟度如何,在本地或整个系统中都可能存在信息语言障碍。解决这个障碍需要思维方式的转变以及对过程正确性的有意认知与干预。为了加强数据素养,首席信息官应该制定数据认知素养培养计划。
找到能自然而轻松的分析数据并达到流利程度的专业人士。流利的数据分析者应该善于描述情景化的使用案例与结果\适用于这些案例的分析技术\以及涉及的基础数据源、实体与关键属性。
找到熟练的数据转换人员。典型的数据转换人员通常是企业数据或信息架构师、数据科学家、信息管理员或相关项目经理。
确定存在沟通障碍妨碍数据与分析有效性的领域。尤其关注商业与信息技术的差距、数据分析差距以及熟练度差距。
积极倾听未采取明确行动的商业成果。在哪些商业领域应用改进的数据和分析能力?正在改进哪些运营决策?
确定出有专业数据转换需求的关键利益相关者。为了评估数据认知素养水平,要求关键利益相关者根据业务成果阐明数据作为战略资产的价值,包括增强业务、货币化以及风险缓解。
确定并维护单词和短语列表。参与数据和分析团队的工作,更好地表达这些短语。
保持人工智能正确性
即使是最成功的公司也会受到不道德行为的负面影响。需要进行广泛与明确的讨论,区分公司可能会遇到的道德伦理问题与困境类型与实际可以采取的道德伦理立场之间的区别。
后退一步,将数字伦理和数字关联主义作为改善数字业务,或者广义来说,数字化社会的准则。
主动寻找与使用人工智能数据有关的道德伦理案例研究,因为企业所面临的道德伦理问题往往都不是新出现的类型。其中,机遇包括竞争差异化和优越的价值主张;危险包括声誉风险、监管问题和财务损失等。
将人工智能算法与数据交换作为实现数字交互的推动力,并以此让利益相关者参与生态系统而非特定流程控制。鼓励每个人都能在人工智能环境中贡献他们的数据并成为互惠生态系统的积极参与者。